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Period-adding bifurcations and chaos in a periodically stimulated excitable neural
relaxation oscillator

S. Coombes and A. H. Osbaldestin
Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University,

Leicestershire LE11 3TU, United Kingdom
~Received 14 March 2000; revised manuscript received 22 May 2000!

The response of an excitable neuron to trains of electrical spikes is relevant to the understanding of the
neural code. In this paper, we study a neurobiologically motivated relaxation oscillator, with appropriately
identified fast and slow coordinates, that admits an explicit mathematical analysis. An application of geometric
singular perturbation theory shows the existence of an attracting invariant manifold, which is used to construct
the Fenichel normal form for the system. This facilitates the calculation of the response of the system to
pulsatile stimulation and allows the construction of a so-called extended isochronal map. The isochronal map
is shown to have a single discontinuity and be of a type that can admit three types of response: mode-locked,
quasiperiodic, and chaotic. The bifurcation structure of the system is seen to be extremely rich and supports
period-adding bifurcations separated by windows of both chaos and periodicity. A bifurcation analysis of the
isochronal map is presented in conjunction with a description of the various routes to chaos in this system.

PACS number~s!: 87.10.1e, 05.45.Xt
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I. INTRODUCTION

The formulation of analytically tractable models of sy
aptically interacting neurons is of fundamental importance
the understanding of the behavior of biological neural s
tems. Many biologically realistic models of the single ne
ron, such as the Hodgkin-Huxley model, are so complex
they provide little intuitive insight into the dynamics the
simulate, especially at the network level. Extracting the
sence of neuronal behavior has encouraged many to pu
studies of networks of simple interacting threshold eleme
The simplest and most thoroughly understood is the bin
Hopfield model@1#. At the network level this has prove
extremely useful in providing metaphorical models of lea
ing and memory retrieval at the expense of maintaining c
tact with biological reality. Cells in the Hopfield model a
described as either firing or not firing and do not have
capability of describing variations in neuronal firing rate
and neither are delays arising from the synaptic transmis
process or the propagation of action potentials allowed
The consideration of neurons as threshold devices for ge
ating trains of spikes that can induce realistic postsyna
potentials in other neurons has led to detailed studies
integrate-and-fire neural networks~see @2# for a recent re-
view!. In these models, the properties of dendrites, axo
and synapses are described with the use of an appropri
defined, yet biologically realistic, delay kernel, and the tim
of generation of a spike is considered to be all importa
These systems are having increasing success in mod
aspects of biological neural systems ranging from the g
eration of locomotor patterns@3# to the understanding of ori
entation tuning in the visual cortex@4#. Undoubtedly, there
will be some instances in which the use of an integrate-a
fire or related model is inappropriate. One such instance
arisen recently that is related to the response of isola
single neurons to trains of repetitive pulsatile stimuli. It
known from several studies that with variation in the peri
PRE 621063-651X/2000/62~3!/4057~10!/$15.00
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of pulsatile stimulation, an alternating pattern of period a
chaotic response can be observed in a single excitable ne
@5–9#. In fact, it is possible to observe a period-adding bifu
cation interspersed with windows of chaos. Such behav
has been reproduced, to some extent, with complex mo
combining the Hodgkin-Huxley equations with calcium a
calcium-dependent potassium components@10–13#. In a re-
cent study of the periodically forced integrate-and-fire ne
ron, no such response was found@14#. The integrate-and-fire
neuron focuses on the generation of action potentials
spikes and makes no attempt to mimic their electrical wa
forms. It is likely that this is the source of their inability t
reproduce experimentally observed behavior under repet
pulsatile stimulation. Motivated by this discrepancy, we tu
to another less studied model of a single neuron related to
binary model originally introduced by Abbott@15#. The bi-
nary model of Abbott belongs to the class of mathemati
systems known as planar relaxation oscillators. One may
gard it as either a caricature of the Hodgkin-Huxley syst
or a generalization of the integrate-and-fire model to inc
porate a state-dependent threshold and a representation
spike. In either case, we shall demonstrate that it is an a
lytically tractable single neuron model that can produ
period-adding bifurcations with windows of both chaos a
periodicity that submits to an exhaustive analysis within
framework of dynamical systems theory. Previous studies
periodically driven relaxation oscillators have focused up
numerical studies in the so-called oscillatory regime, wh
the system supports a limit cycle in the absence of any
ternal signal@16–18#. Systems with limit cycles may be
quite naturally investigated at the network using such te
niques as averaging theory that allow one to use theo
developed for the study of coupled oscillators~see, for ex-
ample,@19#!. One may also invoke the use of phase-respo
curves and isochronal coordinates to study the behavio
such systems to external forcing@20,21#. Interestingly, in the
case of the oscillatory FitzHugh-Nagumo model, bo
period-adding bifurcations and irregular activity have be
4057 ©2000 The American Physical Society
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4058 PRE 62S. COOMBES AND A. H. OSBALDESTIN
observed numerically@22#, suggesting that mathematic
studies of planar relaxation oscillators under pulsatile stim
lation should be pursued. It is important to appreciate, ho
ever, that many neurons function as excitable threshold
ments. Typically they will only elicit a single spike o
electrical activity in response to a pulsatile stimuli of suf
cient magnitude. Studies of excitable systems under puls
stimulation are relatively few compared to their oscillato
counterparts. A recent paper on the bifurcation structure
periodically forced nerve pulse equation modeling card
conduction redresses this balance somewhat@23#. Impor-
tantly, it has been established that some of the technique
dealing with oscillatory systems may be taken over to
excitable regime. Notably, work by Rabinovitchet al. ex-
tends the concept of isochronal coordinates to excitable
tems with specific application to the forced Bonhoeffer–v
der Pol oscillator in its excited mode@24,25#. This has been
extended to the case of neural systems by Ichinoseet al. @26#
and Yoshinoet al. @27#. In the first case, the authors nume
cally study the response characteristics of the excita
FitzHugh-Nagumo system. Bifurcations of the system
explained in terms of a mathematical idealization, the
calledZ model, a piecewise differentiable relaxation oscil
tor with a single stable node. The work of Yoshinoet al.also
pursues an investigation of the FitzHugh-Nagumo syst
but this time it discusses a mathematical idealization of
expected isochronal map that includes the effects of a st
focus~rather than a stable node!. In this paper, we show tha
one can make similar progress without recourse to overs
plification if one works directly with a piecewise linear car
cature of the FitzHugh-Nagumo system known as
McKean model@28#. Within the context of excitable nerv
tissue, this particular caricature has exact solutions ass
ated with traveling pulses. In the limit that the fast and sl
time scales of this system become effectively independ
one recovers the binary model of Abbott. In this paper,
consider the McKean model in the limit of weak dependen
between the two-time scales of the system and utilize so
of the framework of the binary model in the construction
isochronal coordinates under external pulsatile stimulat
By analyzing the properties of this map, we establish
conditions under which period-adding bifurcations and w
dows of chaos are to be found in the excitable McKe
model under external periodic pulsatile stimulation.

In more detail, the outline of the paper is as follows.
Sec. II, we discuss planar relaxation oscillators appropr
for studying excitable nerve tissue and introduce
McKean model. The relationship to the binary model of A
bott is explained and the~state-dependent! threshold for a
spike response is identified. We define the extended isoc
of an excitable system with a stable node in Sec. III. W
this definition we first show how to construct the isochron
map of the binary model under external pulsatile stimulati
The analysis of the resulting map predicts that the sys
can mode-lock to an external periodic pulsatile signal a
undergo period-adding bifurcations but that it is unlikely
generate any chaotic orbits. In Sec. IV, we consider the
restrictive case in which the fast and slow time scales of
McKean model are weakly dependent. Using geometric
gular perturbation theory, we show the persistence of inv
ant manifolds from the binary model. This allows us to c
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culate estimates for the isochronal coordinates of
McKean model, which reduce to those of the binary mode
some limit. With a mixture of numerics and analysis, t
resulting isochronal map is shown to support an extrem
rich bifurcation structure. Our main observation is the ex
tence of period-adding bifurcations separated by windows
chaos and periodicity. The properties of the isochronal m
responsible for this bifurcation structure are identified.
nally, in Sec. V we discuss the extension of the work p
sented in this paper to the important problem of synaptica
coupled neural systems.

II. THE MODEL

The behavior of neural cells is often explored by exam
ing the response of their cell membrane potential to the
jection of an external current. These responses are part
dependent upon membrane conductance properties and
reversal potentials of the ions involved in generating
electrical response. Mathematical models for such proce
are often given by combining current conservation with d
ferential equations for the cell conductances and membr
potential. Perhaps the most famous model of nerve tissu
the Hodgkin-Huxley system@29#. Although originally intro-
duced to model the squid giant axon, recent work sugg
that the FitzHugh-Nagumo~FHN! model actually provides a
better qualitative description@30#. This may seem somewha
surprising since the FitzHugh-Nagumo model is often co
sidered as a two-dimensional caricature of the fo
dimensional Hodgkin-Huxley dynamical system. Apart fro
this recent observation, one often prefers to study the F
system for its comparative mathematical simplicity. T
FitzHugh-Nagumo system is given by

e v̇5 f ~v !2w2w01I , ~1!

ẇ5v2gw2v0 , ~2!

where f (v)5Cv(v2a)(12v). The variablev corresponds
to membrane potential whilew is associated with the refrac
tory properties of a neuron. The parametersC, a, e, w0 , v0 ,
andg may be considered as combinations of the membr
reversal potentials and conductance properties whileI is any
externally injected current. Fore!1, one may regard the
FHN system to be comprised of a fast variable,v, and a slow
variable,w. The fast variable has a cubic nullcline (v̇50)
and the slow one has a nullcline (ẇ50) that is monotoni-
cally increasing. In this paper, we consider the piecew
linear caricature of the FHN nonlinearity, namely

f ~v !5H 2v, v,a/2

v2a, a/2,v,~11a!/2

12v, v.~11a!/2.

~3!

This choice is preferable for two reasons:~i! piecewise linear
models often possess explicit solutions and~ii ! the essential
feature of the cubic nonlinearity in the FHN system is
‘‘ N’’ shape@15# and this is duplicated by the piecewise line
form with its negative resistance region. The above choice
nonlinearity was first considered by McKean@28# in the con-
text of traveling nerve impulses, where it proved possible
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PRE 62 4059PERIOD-ADDING BIFURCATIONS AND CHAOS INA . . .
calculate the speed and shape of traveling pulses exactly.
system has nullclines defined byf (v)5w1w02I and w
5(v2v0)/g. The case when the fixed point is such thatv
,a/2 is said to define the excitable regime. It is conveni
to keep track of which branch of the nonlinear function~3! is
playing a role in the dynamics. To do this, it is natural
introduce the binary variable:

S5H 11, v.~11a!/2

0, v,a/2.
~4!

If the time scale for thev dynamics is fast compared to th
time scale for thew dynamics~i.e., in the limit ase→0!,
then v spends no appreciable time off of the nullclines f
v̇50 and we may writef (v)5S2v. Introducing S1(t)
5 limd→01S(t1d), we may write the dynamics forS(t) in
the form

S15Q@ I 2w01~S2a!/22w#, ~5!

whereQ(x)51 if x>0 and is zero otherwise. To establis
the validity of Eq.~5!, we refer to Fig. 1 and check thatS
switches from 0 to 1 asw decreases throughw1 and that this
is reversed asw increases throughw2 . The pointsw1 andw2
in Fig. 1 are easily calculated asI 2w02a/2 and I 2w0
2a/211/2, respectively. On the branchesS50 and 1, the
evolution ofv may be expressed as

v5S2w2w01I . ~6!

This allows us to rewrite the slow dynamics in the form

ẇ52bw1A1S, ~7!

where b511g and A5I 2w02v0 . The fixed point
(v* ,w* ) is given byw* 5(v* 2v0)/g with

v* 5
1

g11
@g~w02I 1X!2v0#, ~8!

whereX5S if the fixed point lies on one of the two branche
S50 or 1 ~excitable regime! and X5a otherwise~oscilla-

FIG. 1. The phase plane for the McKean model has a nullc
with an N shape~thick solid lines! corresponding tov̇50 and a
linear one associated withẇ50 ~thick dashed lines!. The state-
dependent threshold function is the middle part of thev̇50
nullcline described by the linear equationv5vc(w). In this figure
the stable excitable fixed point lies at the intersection of the
nullclines on theS50 branch.
he

t

tory regime!. Up to a trivial rescaling, Eqs.~5! and~7! define
the binary model originally introduced by Abbott@15#. The
model is particularly appropriate for the modeling of oscill
tory, plateau, and rebound properties of real neurons and
been useful in understanding models of networks of pu
coupled neural relaxation oscillators. Insight into the lat
system has come from both a mean-field analysis and a s
of a single binary neuron under periodic square-wave stim
lation. The response of the binary neuron model to repeti
pulsatile stimulation has not previously been performed.
the next section, we show how one may develop such
analysis with the use of isochronal coordinates.

III. ISOCHRONAL COORDINATES eÄ0

First let us focus on the binary model valid fore50. In
this case the system spends all of its time on the branc
S50 and 1. Following the work of Rabinovitch@24,25# and
later work by Ichinoseet al. @26# and Yoshinoet al. @27#, we
define an extended isochron as a set of states synchrono
approaching an asymptotically stable fixed point. The i
chronal coordinate,t(w,S), with an origin at (v,w)5„(1
1a)/2,w2…, is considered to be the differencet@(v,w)
→(v* ,w* )#2t@„(11a)/2,w2…→(v* ,w* )#, where
t@(v1 ,w1)→(v2 ,w2)# denotes the time taken to move fro
(v1 ,w1) to (v2 ,w2). Hence,

t~w,S!5H T, S151

2T, S150,
~9!

whereT is the time taken for the system to evolve fromw to
w2 . The time taken to evolve onto a branch is considered
be essentially zero. We shall explore the consequences t
nonzero evolution time has shortly. By integrating Eq.~7!,
we may write the isochronal coordinate in the form

t~w,S!5
1

b
lnFw22~S1A!/b

w2~S1A!/b G~21!S. ~10!

One of the useful properties of isochronal coordinates is
the following equality holds if there is no stimulation be
tweent and t1D:

t„w~ t1D!,S~ t1D!…5t„w~ t !,S~ t !…1D. ~11!

We now consider a train of pulsatile stimulation at timestn
such thatv→v1kn whent5tn . Assumingw1,w,w2 , we
may write

Sn
15Q„v1kn2vc~w!…, ~12!

where S(tn)5Sn and vc(w) is defined by the conditionv̇
50 and f (v)5v2a, which givesvc(w)5w1a1w02I .
Hence, using Eq.~6! ~under the assumption that just befo
the stimuli the system lies on one of the branchesS50 or 1!,
Eq. ~12! may be written in the form

Sn
15Q„Sn2h~w,kn!…, ~13!

whereh(w,k) is defined by

h~w,k!52w1a2k22~A1v0!. ~14!

e
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For simplicity, we shall assume that the period of stimulat
is sufficiently large so as to allow the system to relax back
the S50 branch between stimuli. In this case, we have t

t~wn11,0!5t~wn ,Sn
1!1Dn , ~15!

where wn5w(tn) and Dn5tn112tn . Now the isochronal
coordinate on theS50 branch is given by Eq.~10! with S
50 so that on this branchwn115C„t(wn11,0)…:

C~t!5
1

b
@A1f exp~2bt!# ~16!

with f5b@w22A/b#. The isochronal coordinate
t(wn11 ,Sn11

1 ) just after the next stimulation may be calc
lated from Eq.~10!, and using Eqs.~15! and~16! allows us to
write

tn115 f ~tn1Dn ,kn!, ~17!

wheretn5t(wn ,Sn
1) and

f ~t,k!5H f L~t,k![t, k,kc~t!

f R~t,k![
1

b
lnF 12f

12fe2btG , k.kc~t!.

~18!

The threshold condition in the isochron map is determin
by h„C(t),k…50 so that

kc~t!52C~t!1a22~A1v0!. ~19!

An example of the graph of the function~18! is shown in
Fig. 2.

Period-adding bifurcations

From now on we examine the case thatDn5D and kn
5k for all n. It is straightforward to show thatf 8(t,k),0
for k.kc(t) so that in the limit of a large number of itera
tions bounded dynamics is confined to an invariant inter
St5@sL ,sR# with sL5 f R(tc1D,k) and sR5 f L(tc
1D,k). The quantitytc is given by the solution ofkc(tc)
5k. It is convenient to introduce a new coordinatex
5g(t)5(t2sL)/(sR2sL). The dynamics in this new vari
able is given byxn115h(xn) with

FIG. 2. The graph associated with the isochronal map for
casee50. Other parameters areI 5v05w050, a50.25, andg
5D50.5.
n
o
t

d

l

h~x!5H hL~x![g+ f L+g21~x1D!, x,u

hR~x![g+ f R+g21~x1D!, x.u
~20!

for some parameteru5g(tc)P(0,1). Note that the invarian
interval is nowSx5@hR(1),hL(u)#5@0,1#. For realistic pa-
rameter values it is always possible to establish the follow
properties: ~i! hL8(x).0 and hR8 (x),0 for all u, ~ii !
hR(u),hL(0), ~iii ! hL(x).x for all x<u, and~iv! uh8(x)u
<1. It has been rigorously shown by LoFaro@31# that such
maps allow only periodn and periodn11 orbits to coexist,
both of which are attracting. Moreover, asu is increased, the
system bifurcates from a single periodn orbit to the coexist-
ence of a periodn orbit with a periodn11 orbit and then to
a single periodn11 orbit. Period-adding bifurcations ar
therefore expected as we varyD for the isochronal map~17!
and are indeed those observed in numerical simulations~see
Fig. 3!. We shall refer to periodic orbits of ordern as being
1:n mode-locked since the response of the system rep
aftern applications of the~periodic! external stimulus. In the
limit of small e, and under periodic pulsatile stimulation, th
coexistence of periodic attractors has also been observed
merically in systems of the type described by Eqs.~1! and
~2! when f (v) has the cubic shape of the Bonhoeffer–v
der Pol oscillator@18#.

It is natural to define an excitation numberr for the sys-
tem as

r~t0!5 lim
N→`

1

N (
n51

N

Sn
1 . ~21!

This gives a measure of the average firing rate of the mo
neuron, an example of which is shown in Fig. 4. The ch

e FIG. 3. The period-adding bifurcation scenario for the isoch
nal map as a function of the stimuli periodD. Parameters areI
5v05w050, a50.25,g50.5, andk50.5.

FIG. 4. Rotation numberr ~independent oft0! for the bifurca-
tion diagram shown in Fig. 3.
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acteristics of the excitation numbers of the binary model
veal a staircase structure with no chaotic response. In
next section, we show that the possibility of an incompl
devil’s-staircase-like structure and the appearance of cha
orbits are associated with a nonzero value fore. Corrections
to the instantaneous approximation of the binary model
calculated using geometric singular perturbation theo
which then allows the construction of an isochronal m
along similar lines to those just presented.

IV. ISOCHRONAL COORDINATES eÅ0

We have seen in the preceding section that the McK
model possesses a simplified structure on taking the sing
limit e→0. The solution of this simplified system~usually
referred to as anouter solution! is often a valid asymptotic
expansion of the full system upon takinge to be a small
parameter. However, in some regions, such as near
nullclines of the fast variable, one would expect the appe
ance of a boundary layer. One technique for matching
calledinner solutions~valid in the neighborhood of a bound
ary layer! with outer solutions is themethod of matched
asymptotics. For the extension of the binary model to no
zeroe, one would expect boundary layers to develop in so
small neighborhood of the branchesS50 and 1 as well as
the thresholdv5vc(w). In effect, for nonzeroe, one can no
longer separate the dynamics of the fast and slow variable
all regions. This complicates the calculation of the times
evolve onto and off the branchesS50 and 1, necessary fo
the formulation of an isochronal map. The techniques
matched asymptotics allow such calculations for smallueu.
Even though the McKean model is in fact exactly solub
one must be prepared to deal with approximate solutions
set of transcendental equations for the evolution times w
this approach. For the purposes of this paper, it is more
propriate to use a complementary set of techniques de
oped using ideas from dynamical systems theory, known
the method ofgeometric singular perturbation theory. The
full theory is often referred to as Fenichel theory and a
view of those parts that we use in this section may be fo
in the tutorial article by Hayeset al. @32#. The theory is best
applied when one can identifygood fast and slow coordi-
nates in a dynamical system. This facilitates the derivation
the so-called Fenichel normal form for the vector fields n
their center manifolds~outer solutions!, which explicitly
contain the center dynamics and the exponential attrac
~or repulsion! in forward time toward the center~slow! mani-
fold.

When e50, the McKean model possesses an invari
manifold which may be written in the formv5m0(w), with

m0~w!5H m0~w;0!, v,a/2

vc~w!, a/2,v,~11a!/2

m0~w;1!, v.~11a!/2

~22!

and m0(w;S)5S2w2w01I . Note that fore50, the two
outer branches defined byS50 and 1 are attracting while th
inner branch defined byv5vc(w) is repelling. To establish
that these statements are also true for smalle, it is convenient
to first write the dynamics in terms of a second-order diff
ential equation:
-
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e v̇1@ge2 f 8~v !#v̇1@v2g f ~v !#1G50, ~23!

where G5gw02gI 2v0 . Using the piecewise linear func
tion given by Eq.~3!, we have that

e v̇1~ge11!v̇1~11g!v1G2gS50 regions 1 and 3,
~24!

e v̇1~ge21!v̇1~12g!v1G1ga50 regions 2,
~25!

where for convenience we call region 1 the regime wh
v,a/2, region 2 is wherea/2,v,(11a)/2, and finally
region 3 is wherev.(11a)/2 ~see Fig. 1!. The structure of
these systems motivates an analysis of

e v̇1~ge1A!v̇1~11Ag!v1C50, ~26!

whereA561 andC is some constant. Further simplificatio
is obtained by shiftingv such thatv→v1C/(11Ag) so
that we may drop the last term in Eq.~26!. The leading-order
outer equation for Eq.~26! is then

Av̇1~11Ag!v50 ~27!

and the leading-order inner equation is found by introduc
s[t/e:

d2v
ds2 1A

dv
ds

50. ~28!

The structure of the inner and outer equations motivates
following new variables:

X5e@Av̇1~11Ag!v#, Y5e v̇1Av. ~29!

With this choice of dependent variables,X is a fast variable
and Y is a slow variable. Note thatX50 gives the outer
equation whileẎ50 gives the inner equation. From Eq
~29!, we may writev and v̇ in terms ofX andY:

v5S 1

eB2A2DX1S 2A

eB2A2DY, ~30!

v̇5S 2A

e~eB2A2! DX1S B

eB2A2DY, ~31!

and B511Ag. Equation~26! may now be rewritten inX
andY coordinates as

FX8
Y8G5F 2

A@e~B11!2A2#

eB2A2

e2B

eB2A2

2
e~B1Ag!

eB2A2

eB~A2eg!

eB2A2

G FXYG ,
~32!

where8[d/ds. After expanding in powers ofe, it is appar-
ent that the above is in the form to which Fenichel theo
applies, i.e., we may write

X85F~X,Y;e!, ~33!

Y85eG~X,Y;e!, ~34!
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where

F~X,Y;e!5F2A1
B11

A
e1O~e2!GX

1F2
B

A2 e21O~e2!GY, ~35!

G~X,Y;e!5S B

A2 1O~e! DX2S B

A
1O~e! DY. ~36!

The e50 case of Eq.~32! possesses a normally hyperbo
invariant manifoldM0[$(X,Y)uF(X,Y;0)52AX50%. By
Fenichel’s persistence theorem there exists a functionme(Y)
satisfying me(0)50, whose graph$(X,Y)uX5me(Y)% is a
slow ~center! manifold for the system~32! that is tangent to
the Y axis at ~0,0!. It is guaranteed thatMe5$(X,Y):X
5me(Y)% is O(e) close toM0 . Introducing the Feniche
coordinateb5X2me(Y), the system~32! has the normal
form

eḃ5Be~b,Y!b, ~37!

Ẏ5G„b1me~Y!,Y;e… ~38!

with Be(b,Y)52A1O(e). SinceA511 describes dynam
ics close to the branchesS50 and 1, we easily see that the
branches are attracting whileA521 for the thresholdv
5vc(w) and it is repelling. The existence of a Fenichel no
mal form, in terms of the fast and slow variablesX and Y,
tells us that we may only consider the slow variableY as
fixed if ub(t)u.ueu. ~In fact, for this system this statemen
holds for ub(t)u.ueu2 @32#.! A simple underestimate for th
time taken to evolve onto the branchesS50 and 1 can there
fore be obtained by considering the Fenichel normal fo
~37! with Ẏ50. For each of the dynamical systems in r
gions 1, 2, and 3 we consider the case of smalle so that to a
first approximation the Fenichel coordinate can be taken
b5v2me(w) @with m0(w) given by Eq.~22!#. We then in-
tegrate Eq.~37! with Y5w considered as fixed to obtain a
estimate for the duration of a given trajectory. To estim
the time taken to evolve from an initial point withb(0).e
onto an attracting part of the invariant manifold, we calcul
the time of flight to within a distanceO(e) of the invariant
manifold as

T̃5
e

A
ln

b~ T̃!

b~0!
. ~39!

In deriving Eq.~39! we have assumed that the slow variab
w remains fixed forub(t)u.e. Obviously, a better estimat
could be obtained by analyzing the full Fenichel normal fo
for the system withḃ50 on the setb50, but this is not
necessary for our purposes. We are now in a position
refine our construction of the isochronal coordinates by e
mating the time spent evolving onto the invariant manifo
that ise close to the branchesS50 and 1. In regions 1 and 3
we find

T̃52e ln@v2m0~w,S!#1O~e ln e! ~40!
-

-

s

e

e

to
i-

while for regions formed from the union of region 2 an
region 1 or region 2 and region 3,

T̃52e lnU S S1a

2
2m0~w,S! D S S1a

2
2vc~w! D

v2vc~w!
U , ~41!

where we drop terms ofO(e ln e). In Eq. ~41! one should
take S51 if attraction is to the manifold close to theS51
branch andS50 for attraction to the manifold close to th
S50 branch.

For small ~but nonzero! e, the isochronal map obtaine
from these estimates has the form of Eq.~17! with

f L~t,k!5H t2e ln k, k,
kc~t!

2

t2e ln
kc~t!2

4@kc~t!2k#
,

kc~t!

2
,k,kc~t!,

~42!

f R~t,k!55
1

b
lnF 12fe

12fee
2btG

2e ln
@kc~t!21#2

4@k2kc~t!#
, kc~t!,k,

11kc~t!

2

1

b
lnF 12fe

12fee
2btG

2e ln~k21!, k.
11kc~t!

2
,

~43!

where we make use of the fact that on theS50 branchw
5C„t(w,0)…, whereC takes the form

C~t!5
1

b
@A1fe exp~2bt!# ~44!

andfe54ef. Note that Eq.~44! reduces to Eq.~16! in the
limit e→0 as expected. As for thee50 case, there is only
one discontinuity in the isochronal map att5tc , wheretc
solvesk5kc(tc) andkc(t) is given by Eq.~19! after using
Eq. ~44!. An example of the graph of this new isochron
map ~with nonzeroe! is given in Fig. 5. The shape of thi
map is remarkably similar to that of the isochronal map
the Z model, itself shown to be in remarkably good agre
ment with that obtained numerically from simulations of t

FIG. 5. The graph associated with the isochronal map for
case whene50.2 andD50.5.
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FitzHugh-Nagumo model withe50.2 @26#. Using these ob-
servations as a guide, we would expect good correspond
between the dynamics of the full McKean model and
reduction to the isochronal map for similar choices ofe. For
the numerical examples presented in the next section,
make the choicee50.2 throughout.

Bifurcation structure

For convenience we rewrite the dynamics in the fo
tn115h(tn), where

h~x!5H hL~x!5 f L~x1D,k!, x,u

hR~x!5 f R~x1D,k!, x.u
~45!

where the parameteru is given by the solution ofkc(u
1D)5k. A numerical example of the bifurcation structur
that one typically sees with variation in the stimuli periodD
for fixed stimuli strengthk is given in Fig. 6. The phenom
enon of period adding is preserved for nonzeroe, albeit with
the introduction of some new bifurcation structures, nam
the appearance of windows in parameter space separ
mode-locked orbits in which bifurcation structures n
present in thee50 case~binary model! are found. However,
for small e the bifurcation diagrams are essentially indist
guishable. One also sees from the evaluation of the ass
ated excitation number~see Fig. 7! an incompleteperturbed
devil’s-staircase-like structure, somewhat more complica
than that of the binary model. To establish whether any
the orbits are chaotic, we numerically evaluate the Liapun
exponent. The Liapunov exponentl gives a measure of or
bital stability and is defined as

l~t0!5 lim
N→`

1

N (
n51

N

lnUdtn11

dtn
U. ~46!

In fact, the numerical evaluation of the Liapunov expone
~shown in Fig. 8! and rotation number~shown in Fig. 7! for
the bifurcation data shown in Fig. 6 indicates the possibi
of chaotic orbits, as well as showing regions in parame
space in which periodic or quasiperiodic motion occurs
would appear that the absence of chaotic orbits in the bin
model is an artifact of the singular limite50. The binary
model is not sufficiently rich to exhibit chaotic behavior. F
arbitrarily small values ofe, however, there are chaotic win
dows in the bifurcation diagram of the isochronal map,

FIG. 6. The period-adding bifurcation scenario interspersed w
chaotic windows for the isochronal map with nonzeroe as a func-
tion of the stimuli periodD. Parameters areI 5v05w050, a
50.25,k50.5, ande50.2.
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though their size may be small. The mechanisms for
generation of chaotic orbits will be outlined below. Oth
differences between the isochronal map derived in Sec
and that derived using geometric singular perturbation the
include the fact that fore50 the isochronal map has a finit
invariant interval, while for nonzeroe it has a~semi!-infinite
invariant interval. Also, since the gradient of the left-ha
branch of thee50 isochronal map is unity, it cannot hav
any fixed points in the limitD→0, for which the attractor
becomes a finite interval. ForeÞ0, it is simple to show that
the derivative of the left-hand branch of the isochronal m
is less than unity and that it possesses a stable fixed poin
D→0. A nonzeroe also leads to new bifurcation structure
including windowsof parameter space that separate 1:n and
1:n11 mode-locked solutions, observed with decreasingD.
As well as supporting a form of period-doubling bifurcatio
the isochronal map with nonzeroe also supports period
adding and saddle-node~tangent! bifurcations.

For small values ofD not too close to zero~referring to
Fig. 6!, the period-adding scenario, observed in Fig. 3 for
binary model, is preserved to some extent, but the bifurca
structure is not so easily described. As an illustrative
ample, we first focus on the right-hand side of Fig. 6. In F
9, we show the bifurcations that occur between a 1:2 an
1:1 mode-locked solution. The window of bifurcations th
separates these mode-locked solutions is also seen to su
a period-adding scenario, but for increasingD. For largeD,
the sequence of bifurcations ends with the appearance
stable fixed point via a saddle-node bifurcation. Interesting
the period-adding bifurcations appear to have some trans
regime which is not quite sharp. In fact, these transition
gimes have bifurcation structure all their own with both p

h

FIG. 7. Rotation numberr for the bifurcation diagram shown in
Fig. 6 ~with t050.1!.

FIG. 8. Liapunov exponentl for the bifurcation diagram shown
in Fig. 6.
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riod doubling and tangent bifurcations. An example of
period-doubling cascade in one of these transition region
shown in Fig. 10. Such cascades occur at theendof each of
the larger mode-locked intervals~which occur with increas-
ing D!. However, typically they themselves occupy a sm
window in parameter space and are unlikely to be of phys
significance in neurodynamical systems. In the right-ha
part of the bifurcation diagram~Fig. 10!, this cascade end
abruptly with the appearance of a period-3 orbit. This qu
tative change in behavior is associated with a tangent bi
cation. Note that before this tangent bifurcation~with in-
creasingD!, the invariant interval can become increasing
large and is infinite whenhL(xm)5u, where xm satisfies
hL8(xm)50 andu is the point at which the isochronal ma
has a discontinuity.

To establish that the bifurcation data in Fig. 6 are in so
sense generic, we produce a numerical plot of the Liapu
exponent in the~D,k! plane in Fig. 11. To help organize th
form of these numerical data, we trace the locus of sup
stable cycles oftn115h(tn) in Fig. 12. Superstable cycle
of orderp are defined as those points in parameter space
which bothh8(t)50 andt5hp(t) for some integerp. Also,
in Fig. 13 we trace the locus of period doubling and sadd
node bifurcation points for the maptn115hp(tn). A com-
parison of Fig. 11 with Figs. 12 and 13 shows that one
indeed organize much of the observed bifurcation struc
of the isochronal map with this elementary analysis~espe-
cially outside the windows separating mode-locked orbi!.
The parameter regimes for nontrivial dynamical behavior
also be loosely identified by tracking the position of the fix
point. For example, in Fig. 6 the fixed pointt* satisfies
hR(t* )5t* for largeD and is stable. Initially it is unstable

FIG. 9. A blowup of the bifurcation diagram shown in Fig.
showing a saddle-node bifurcation at aroundD51.94.

FIG. 10. A blowup of the bifurcation diagram shown in Fig.
showing a period-doubling bifurcation betweenD51.695 and
1.696.
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eventually becoming stable for small enoughD. However, as
D is decreased, the fixed point can fall upon the branchhL .
In the intermediate regime whereuhL8(t* )u.1, there may be
parameter regimes which support a so-called snap-back
peller such that there exists at least one orbit starting fr
the vicinity of the unstable fixed point, which is repelled f
away from the vicinity and then issnappedback tot* . The
existence of such a repeller is sufficient for chaos@33#. Thus
chaotic orbits may arise through at least two mechanis
namely period-doubling cascades and the appearanc
snap-back repellers. Some of the properties of thewindows
may also be uncovered without too much further work. F
example, the shallow gradient ofhR(t) for larget underlies
the narrowness~in parameter space! of the observed period
doubling cascades seen at the edge of a window that s
rates mode-locked solutions~see Fig. 10!. As in numerical
simulations of the Bonhoeffer–van der Pol oscillator, chao
parameter regions are found to decrease with decreasie
@18#. Moreover, similar bifurcation structures to those o
served in the isochronal map derived from the McKe
model, including the coexistence of periodic attracto
period-adding bifurcations, period-doubling bifurcations, a
chaos, are seen. The precise scaling laws for the size o
chaotic windows are of mathematical interest, but perh
not so important for a discussion of the computational pr
erties of the McKean model and its usefulness in understa
ing data from real experiments such as those in@9#. It would

FIG. 11. Numerical evaluation of the Liapunov exponentl for
the ~D,k! parameter plane~for a 2503250 grid! with t050.1, a
50.25,g50.5, e50.2, andI 5v05w050.

FIG. 12. Locus of superstable cycles of order 1~I!, 2 ~II !, 3 ~III !,
and 4 ~IV ! in the ~D,k! plane corresponding to the parameters
Fig. 11.
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seem that period-adding bifurcations interspersed with c
otic activity are a feature of the McKean model, absent in
binary model (e50). This is consistent with experimenta
observations of the behavior of real neurons and supports
credibility of the McKean model as a useful caricature of
excitable neuron.

V. DISCUSSION

In this paper we have shown that the response of
McKean model, of an excitable neuron, to pulsatile stimu
tion can be interpreted in terms of an associated discont
ous one-dimensional map, which we have called the
tended isochronal map. This map is derived using techniq
from geometric singular perturbation theory and previo
definitions of isochronal coordinates for excitable system
The parameter dependence of period adding, period d
bling, and saddle-node bifurcations can be used to orga
some of the rich structure observed in numerical experime
and to show that chaotic trajectories are suppressed in
limit that the voltage variable of the McKean model is mu
faster than the recovery variable. For small intervals betw
the application of pulsatile stimulation, we would not expe
the dynamics of the isochronal map to approximate thos
the full McKean model. In this case, the system would n
have time to relax back to the state withS50, violating one
of the assumptions used in the reduction~the other being tha
we consider smalle!. Hence, the period-adding bifurcatio
~seen with decreasingD! may be interrupted for small value

FIG. 13. Locus of period-doubling~solid lines! and saddle-node
~dashed lines! bifurcations for the maptn115hp(tn), where p
51, . . . ,4. Theorder ofp in the figure is given in Roman numeral
Parameters are as for Fig. 11.
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of D. In fact, numerical simulations of the FitzHugh-Nagum
system exhibit precisely this interruption and show a tran
tion to asuperpulsestructure, where pulses are found sup
posed on one another@22#. However, for larger values ofD
one would expect the period-adding bifurcation to be se
In experimental studies of cardiac tissue by Chialvo and
liffe @34#, the bifurcation scenario 1:1→1:2→1:3→1:4 is
clearly seen, suggesting that period-adding bifurcations a
feature of periodically stimulated excitable systems in g
eral, not just neural ones. Chialvo and Jaliffe also make
observation that structures typically seen in periodica
forced oscillatory systems, such as hierarchies of perio
solutions described by the Farey sequence, are possib
excitable systems. Similar conclusions may be drawn fr
our work by noting the devil’s-staircase-like structure of t
excitation number, also commonly seen in periodica
forced oscillatory systems.

Importantly, the work presented applies to a generali
tion of the binary neuron model of Abbott@15# that can be
explicitly analyzed in the presence of pulsatile stimuli. Sin
the output of such a neuron model can be used to spec
train of pulsatile stimuli@say, in the form of a spike train
Snd(t2Tn), where theTn are the times at which the iso
chronal coordinate passes through some reference value
signals a firing event, sayt50#, one may easily formulate
models of pulse-coupled McKean or binary neuron n
works. Previous studies of coupled relaxation oscillat
have focused upon coupling through fast threshold mod
tion @35,36# or variants thereof@37#. The extension of this
approach to incorporate other caricatures of neural relaxa
oscillators, which, for example, include the effects of sta
foci or do not relax back near to rest between stimuli, is
course an area that should be developed. It is also likely
the extension to the case of noninstantaneous interact
may be possible using recent techniques developed
Yoshinagaet al. @38# for the study of synaptically coupled
Hodgkin-Huxley equations. A program of work that includ
features such as these as well as the effects associated
axonal, synaptic, and dendritic processing is a topic of c
rent research.
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